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ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) is a soil bacterium that positively impacts 
soil and crops. These microbes invade plant roots, promote plant growth, and improve 
crop yield production. Bacillus subtilis is a type of PGPR with a short shelf-life due to its 
structural and cellular components, with a non-producing resistance structure (spores). 

Therefore, optimum formulations must be 
developed to prolong the bacterial shelf-
life by adding humic acid (HA) as an 
amendment that could benefit the microbes 
by providing shelter and carbon sources 
for bacteria. Thus, a study was undertaken 
to develop a biofertilizer formulation from 
locally isolated PGPR, using HA as an 
amendment. Four doses of HA (0, 0.01, 
0.05, and 0.1%) were added to tryptic soy 
broth (TSB) media and inoculated with B. 
subtilis (UPMB10), Bacillus tequilensis 
(UPMRB9) and the combination of both 
strains. The shelf-life was recorded, and 
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viable cells count and optical density were used to determine the bacterial population and 
growth trend at monthly intervals and endospores detection using the malachite green 
staining method. After 12 months of incubation, TSB amended with 0.1% HA recorded 
the highest bacterial population significantly with inoculation of UPMRB9, followed by 
mixed strains and UPMB10 at 1.8x107 CFUmL-1, 2.8x107 CFUmL-1and 8.9x106 CFUmL-1, 
respectively. Results showed that a higher concentration of HA has successfully prolonged 
the bacterial shelf-life with minimal cell loss. Thus, this study has shown that the optimum 
concentration of humic acid can extend the bacterial shelf-life and improve the quality of 
a biofertilizer.

Keywords: Colony forming unit, formulation, humic acid, PGPR, shelf-life 

INTRODUCTION 

Plant growth-promoting rhizobacteria (PGPR) has developed as an alternative method 
for reducing the use of agricultural chemical fertilisers to promote sustainable farming 
practices (Saeed et al., 2017; El-Tarabily et al., 2020; Al Raish et al., 2021; Al Hamad et 
al., 2021; Lahlali et al., 2022; Rizvi et al., 2022). Nowadays, much emphasis is placed on 
lowering the use of costly inorganic fertilizers and avoiding environmental contamination 
by reducing nitrogen and phosphate fertiliser doses using biofertilizers (El-Ghamry et 
al., 2018). Microorganisms commonly used as biofertilizer components include nitrogen 
fixers, phosphorous and potassium solubilizers, PGPRs, fungi, endo and ectomycorrhizal, 
cyanobacteria, and other useful microscopic critters (Itelima et al., 2018; Kamil et al., 2018; 
El-Tarabily et al., 2019; Mathew et al., 2020; El-Tarabily et al., 2021; Alblooshi et al., 2021). 
In addition, PGPR can directly impact the root’s nutrient transportation systems. The most 
common issue expressed by farmers and inoculant manufacturers is the shelf life of carrier-
based inoculants. If short-lived biofertilizers are not utilized or sold before expiration, they 
will lead to a net monetary loss to the marketing authority (Calvo et al., 2019). Furthermore, 
the technical restrictions include the possibility of product degradation owing to reduced 
shelf-life or accidental mutations throughout the fermentation or storage. Therefore, to 
prolong the shelf-life, an optimized formulation must be developed (Mahalakshmi et al., 
2019). Moreover, the formulation should normally include the active component in an 
appropriate carrier and additives to stabilize and safeguard the microbial cells throughout 
storage, transportation, and the targeted root zone (Arriel-Elias et al., 2018). 

Humic acid (HA) is still soil’s most complex and physiologically active component. 
It is dark brown, water-soluble at higher soil pH levels, and can persist in serene soil for 
generations (Sootahar et al., 2020). Humic acid amendments contain beneficial effects 
accelerated absorption of nutrients, decreased toxins, increased water retention, improved 
microbial growth by providing shelter and carbon sources, and improved overall soil 
structure (Ekin, 2019; Meng et al., 2021). One of the humic acids’ most visible and 
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significant effects is their contribution to soil microbial communities. Scientists are 
becoming increasingly aware of the importance of a healthy microbiome to soil habitats. 
Furthermore, because bad soils and chemicals have devastated bacteria populations, 
they must be recovered (Pukalchik et al., 2019; Sun et al., 2022). For the past 20 years, 
scientists have been studying the interactions of humic acid with microbes. Initially, HA 
was researched primarily as a carbon or micronutrient source or its overall impact on 
microorganism development (Yang et al., 2021). Moreover, humic acid (HA) is often 
regarded as the essential component of organic matter, influencing the behaviour of organic 
contaminants. Due to the huge number of reactive functional groups, there was an extensive 
range of reaction activities, including surface adsorption, ion exchange, and complexation 
(Li et al., 2022; Rashad et al., 2022). 

The liquid formulations are better than solid formulations because they allow for adding 
nutrients and extending the bacterial shelf-life (Zvinavashe et al., 2021). It is difficult to 
design unique formulations, but whether the product is new or improved, it must be steady 
during transport and storage, easy to handle and use, boost the activities of the organisms 
in the fields, and be expense and practicable (Young et al., 2006; Berninger et al., 2018). 
Several studies have shown that mixtures of PGPR could enhance biological control activity 
for multiple plant diseases through the mechanisms of induced systemic resistance or 
antagonism (Liu et al., 2018). The isolated bacteria (B. subtilis) with humic acid showed 
good survival with minimal cell loss for up to five months of storage (Young et al., 2006).

Bacillus subtilis cells are rod-shaped, Gram-positive bacteria found in soil and 
vegetation; they thrive in mesophilic environments (Cho & Chung, 2020). Bacillus subtilis 
generates dormant, extremely resistant endospores in response to environmental challenges 
or malnutrition. As a result, B. subtilis has evolved mechanisms that allow it to thrive 
under difficult conditions (Luu et al., 2022; Mahapatra et al., 2022). These spores can 
survive in hostile conditions for many years without necessary nutrition, and it is a type 
of PGPR with a short shelf-life due to its structural, and cellular components (Luu et al., 
2022). Many factors influence a Bacillus spore’s resistance to heat, strong proteinaceous 
coats, peptidoglycan cortex, moderate moisture content, and large amounts of di-picolinic 
acid and divalent cations within the spore core are all present (Durga et al., 2021; Cho 
& Chung, 2020; Mukherjee et al., 2022). Moreover, B. subtilis secretes extracellularly 
during nutrient scarcity, attempting to kill proteins that affect programmed cell death in 
siblings, releasing nutrients and allowing a portion of the population to expand. Dormancy 
can be seen as a risk-aversion strategy since resting structure, and cellular components 
necessitate energy investment and responsiveness to signals associated with favourable 
situations (Pashang et al., 2022). Dorner published a method for staining endospores in 
1922, and Shaeffer and Fulton refined their approach in 1933 to make the procedure of 
staining only bacterial endospores speedier. The primary goal of endospore staining is to 
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distinguish bacterial spores from other vegetative cells and spore formers from non-spore 
formers (Lindsay et al., 2021). 

Therefore, this study was undertaken (1) to develop a biofertilizer formulation 
consisting of locally isolated PGPRs with an optimized rate of humic acid concentrations 
as an amendment and (2) to study the shelf-life of these PGPRs for up to 12 months of 
incubation.

MATERIALS AND METHODS 

Pure Colonies Collection of PGPR Strains 

Two locally isolated plant growth-promoting rhizobacteria (PGPRs), B. subtilis (UPMB10) 
and B. tequilensis (UPMRB9) were collected at the Microbiology laboratory Department 
of Land Management in the Faculty of Agriculture, Universiti Putra Malaysia. These 
PGPRs were collected due to their morphological, cultural, and beneficial biochemical 
characteristics like N2-fixing ability, solubilizing phosphate and potassium, and producing 
IAA, siderophore, and pectinase. These PGPR strains were also reported to increase the 
concentrations of N, P, and K in shoots and storage roots (Ali-Tan et al., 2017; Shultana 
et al., 2020; Kapadia et al., 2021; Shultana et al., 2021). These PGPRs were grown on 
nutrient agar (NA) media. Tryptic soy agar (TSA) media was used for sub-culturing these 
strains. Twenty ml of TSA media was poured into Petri plates, and the new pure colonies 
of the two strains were assessed by quadrant streaking technique to obtain a single and 
pure colony. A loopful from the original local strains was taken and streaked into a new 
Petri plate with TSA media, and each sample was replicated thrice and then incubated at 
30℃ in the incubator (SD-310 RL, Dasol, Korea) for 24 h.

Collection and Characterization of Humic Acid 

Humic acid technical purchased from Sigma-Aldrich brand purity of ≥ 98 mol.% with 
code: 102098564 53680-50G products of Switzerland. Humic acid, which is black in 
colour and low solubility in water, has a pH of 6.2; its soluble in alkali but insoluble in acid 
and adjusted to seven by using tryptic soy broth media (TSB), which has a pH of 7.23, an 
organic C component of 30–50%, hydrogen (about 5%), nitrogen (about 3%) and a CEC 
of 70–166 me/100g. Humic acids are not single molecular formula compounds. Figure 1 
illustrates that humic acid was generally aromatic in structure, with amino acids, amino 
sugars, peptides, and aliphatic molecules connecting the aromatic groups. Humic acid’s 
hypothesized structure consists of free and bound phenolic hydroxyl groups, quinines, 
oxygen and nitrogen bridges, and carboxy groups (Nardi et al., 2021). Model structure of 
humic acid according to Stevenson and Schnitzer (1982): 
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Figure 1. Model structure of humic acid (Stevenson & Schnitzer, 1982)

Shelf-Life Experimental and Treatments and Total Bacterial Population During 
Shelf-Life Period
A laboratory experiment was conducted with twelve treatments and three replications. The 
detailed treatments were as follows:

T1 =      0% Humic acid + UPMB10
T2 =      0% Humic acid + UPMRB9
T3 =      0% Humic acid + mixed strain 
T4 = 0.01% Humic acid + UPMB10
T5 = 0.01% Humic acid + UPMRB9
T6 = 0.01% Humic acid + mixed strain
T7 = 0.05% Humic acid + UPMB10
T8 = 0.05% Humic acid + UPMRB9
T9 = 0.05% Humic acid + mixed strain
T10 = 0.1% Humic acid + UPMB10
T11 = 0.1% Humic acid + UPMRB9
T12 = 0.1% Humic acid + mixed strain

The microbial activity focuses on obtaining the population of bacteria in four 
Humic acid concentrations (0, 0.01, 0.05 and 0.1%) with two bacteria strains (B. subtilis 
(UPMB10), B. tequilensis (UPMRB9) and the mixture of both). Microbial development 
was recorded of this bacterium in laboratory circumstances for 12-months at a temperature 
of 30°C.

Procedure: 0, 0.01, 0.05 and 0.1 gm HA were weighted using an electric weighing 
machine (Precisa 1620 C) and transferred to 500 ml Erlenmeyer flasks. Tryptic Soy Broth 
(TSB) was prepared separately by dissolving 30 g of the media in 1 L distilled water, and 
about 100 ml TSB was transferred to each flask. The liquid formulations were autoclaved 
at 121°C for 15 minutes. After cooling at room temperature, one loopful (approximately 
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1 x 106 CFU) from UPMB10 and UPMRB9 cultures was taken and transferred into the 
broth media, then incubated under constant shaking at 150 rpm for 24 h at 33°C; each 
sample was replicated thrice. These conditions were essential so that both bacteria achieve 
a stationary stage of their respective growth curves at the time of their integration into 
the formulations. The bacterial growth population was determined by the serial dilution 
method 1/10 dilution series. One hundred microliters of each dilution were added to TSA 
Petri plates; the sample was spread evenly over the agar surface using the sterile glass 
spreader, and the plates were incubated in an incubator (DS-310RL, Dasol, Korea) at 33℃ 
for 24 hours. The procedure was repeated three times for each humic acid concentration 
monthly for up to twelve months.

Measurements of Optical Density (OD) at Monthly Intervals for Up to 12 Months
Optical density (OD) was detected using a UV-visible spectrophotometer and checked at 
monthly intervals for up to 12 months. All treatments during this period were stored at room 
temperature at 30°C; the procedure was attempted using an 80% volume spectrophotometer 
cuvette. About 3.5 ml of samples were transferred from each treatment of PGPR-HA 
formulations (0, 0.01, 0.05, and 0.1%) and tryptic soy broth (TSB) for blank value to 
measure the absorbance at 600 nm wavelength. All measurements were repeated at least 
three times. In addition, bacterial growth trend was proposed to measure the optical density 
value for B. subtilis (UPMB10), B. tequilensis (UPMRB9), and mixed strains at 0, 6, 12, 
18, and 24-hour periods at 30°C for 0.1% humic acid (HA) and control (without humic 
acid) to see the growth line trend at the 6-hour interval for 24 hours. 

Endospore Stain Protocol by Using Malachite Green 
According to the Schaeffer and Fulton (1933) method for staining endospores, 0.5 g of 
malachite green was dissolved in 100 ml of distilled water, and 2.5 g of safranin was 
dissolved in 100 ml of 95% ethanol. From 24 hours and 12-month-incubated cultures, 
endospores were detected using malachite green by the endospore staining method. The 
culture was spread on a slide and dried at room temperature naturally before being heat-
fixed and wrapped in blotting paper. The slide was loaded with malachite green solution, 
which was steamed into the cells and spores using the burner’s steaming light. This heating 
stage stained the vegetative cells and endospores; once the heating was complete, cool, 
rinse the dyes, and wash gently with water. Next, add safranin to the slide to colour the 
vegetative cells. Remove excess water, dry with a clean towel, and allow the slide to air 
dry. A stained smear was observed with low magnification (10X) and then switched to 
100X with oil immersion. The endospores appeared green, and the vegetative cells were 
brownish-red or pinkish (Shen & Zhang, 2017). 
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Statistical Analysis
All data obtained were subjected to Analysis of Variance (ANOVA) using Statistical 
Analysis System (SAS) version 9.4. Means were compared by Significance Differences 
(LSD) at the 5% probability level. Data were subjected to ANOVA using (SAS 2004). 

RESULTS AND DISCUSSION

Effect of Humic Acid Concentrations on Bacterial Population 
Data presented in Figure 2 showed the bacterial population and viability in humic acid 
(HA) amended formulation with different strains (B. subtilis (UPMB10), B. tequilensis 
(UPMRB9), and mixed strain) can be enhanced by the highest concentration of HA for 
up to 12 months of incubation at 0.1% HA under 30°C room temperature. At 6 months of 
incubation, HA formulations at 0.1% and 0.05% concentrations for UPMB10, UPMRB9, 
and mixed strain, respectively, showed significantly highest population, then started to 
decline after six months of storage. While 0% HA and 0.01% HA concentration, the 
maximum population was recorded at 3 months of incubation by UPMB10, UPMRB9, 
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Figure 2. Effect of HA concentrations on bacterial population with three replications in (a) UPMB10, (b) UPMRB9, 
and (c) mixed strains for up to 12 months interval
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and mixed strain, respectively, then started to decline after three months of storage. After 
12 months of incubation, tryptic soy broth (TSB) amended with 0.1% of HA recorded the 
highest population significantly at 2.8 x107 CFU mL-1 (log 7.8) by mixed strain, followed 
by the UPMRB9 and UPMB10 at 1.8 x107 CFU mL-1 (log 7.6) and 8.9 x106 CFU mL-1 (log 
7.3), respectively, followed by 0.05% HA compared to 0% and 0.01% HA. 

Tryptic soy broth (TSB) media with humic acid as an amendment demonstrated an 
excellent combination as a new formulation for the bacteria shelf-life. Results showed 
that a higher concentration of 0.1% HA has a better shelf-life after 12 months of storage, 
and the bacterial strain showed excellent vitality with minimal cell loss from UPMRB9 at 
1.8 x107, followed by UPMB10 and mixed strains at 8.9 x107 and 18.7 x105, respectively. 
At the same time, the lowest concentration was observed at 0% HA and 0.01%HA. A 
similar finding was made by Young et al. (2006), in which they reported that humic acid 
could enhance the viability of the encapsulated bacteria and observed minimal cell loss 
upon storage for five months. The steady growth of microbial activity is noticed in every 
treatment (bacterial formulations) due to increasing cell count and a maximum extent until 
its reduction. 

This finding is illustrated by the time the microbial cells have adapted and grown, 
even if kept at temperatures other than the optimum. Since the cells are not killed by 
their metabolism, they can slowly take the nutrients in the formulations. Cellular activity 
decreases as a result of cell death if it is diminished (Mendoza-Labrador et al., 2021). We 
believe that one of the main reasons is that humic acids essentially offer better habitation 
and nutrition for beneficial bacteria, which explains why microbial communities thrive in 
the presence of humic acids (Li et al., 2019; Morawska et al., 2022). Many strategies have 
been postulated earlier to discuss the impact of humic acid on bacteria, such as changes in 
surface charge, chemical reactions, and steric impact caused by HA coating. Moreover, HA 
can also play a crucial function in altering the agglomeration of mineral particles caused 
by HA smears (Hong et al., 2015). Tikhonov et al. (2010) reported that the humic acid in 
live cells implies that it may be possible to use their energy more efficiently. ATF stores 
energy for cell regeneration, growth, and reproduction. 

Effect of Humic Acid on Bacterial Optical Density During Shelf-Life

At monthly intervals for up to 12 months, 0.1% of humic acid (HA) significantly stimulated 
the optical density measurements (OD), followed by 0.05% compared to 0% and 0.01% 
for PGPRs shelf-life. The results show a significantly highest OD (600nm) in 0.1% HA 
after 12 months of incubation at (2.60) from a mixed strain followed by B. tequilensis 
(UPMRB9) and B. subtilis (UPMB10) at (2.46) and (2.44), respectively, followed by 0.05% 
HA. While 0% HA and 0.01% HA were recorded as the lowest OD readings (Figure 3).
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Figure 3. Optical density at 600 nm monthly intervals for 12 months of incubation in (a) UPMB10, (b) UPMRB9, 
and (c) mixed strain with 4 concentrations of HA and 3 replications. Means with the same letter do not significantly 
differ at α = 0.05 LSD.
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Among all formulations, 0.1% humic acid was the best formulation for maintaining the 
survival of bacterial growth throughout the incubation period. After 12 months of storage 
and in UV-visible spectrophotometer analyses, the optical density (OD) at 600 nm has 
demonstrated B. subtilis (UPMB10), mixed strain, and B. tequilensis (UPMRB9) at (3.24) 
(3.19) and (3.04), respectively. The degradation rate depended on the time. During the first 
6 months, there was an increase in bacterial growth. While from six months of storage 
onwards, the degradation rate of bacterial growth was slow because, in this period, the 
survival and development of microorganisms are affected by various variables. The inherent, 
intrinsic characteristics or variables are nutrient content, moisture content, pH, available 
oxygen, and temperature (Awulachew, 2021). Although the microbe’s nutrient requirements 
are quite organic, the following are important: water, energy source, carbon-nitrogen supply, 
vitamins, and minerals. For each treatment (bacterial formulation), a progressive increase 
in microbial activity is noted as the number of cells increases, reaching a maximum point 
before decreasing (Timmis & Ramos, 2021; Bhakyaraj et al., 2022). This phenomenon 
is explained by the time required for microbial cells to adapt and proliferate, even when 
stored without agitation or at temperatures other than optimal. Since their metabolism is 
not disrupted, the cells continue to ingest the nutrients from the formulas, albeit at a slower 
rate (Arriel-Elias et al., 2018; Tapia et al., 2020). So, the degradation rate shows when the 
microbe’s nutrient requirements start to decline. 

Bacterial Growth Curves With and Without Humic Acid 

Cell growth of individual bacterial strains and mixed strains was checked at 600 nm 
using the UV-visible spectrophotometer. An increase in optical density (OD) has been 
demonstrated in humic acid as an amendment. The increased bacterial growth in Bacillus 
subtilis (UPMB10), B. tequilensis (UPMRB9), and mixed strains with HA was gradually 
at the first (lag phase) at (1.83), (1.85), and (1.81) respectively, but then became drastic 
at12 hours on-wards at (2.74), (2.84) and (2.58), respectively. Whereas, without humic acid 
OD of the bacterial growth in UPMB10, UPMRB9, and the mixed strain was drastically 
increased from 0–6 hours of incubation and gradually became constant afterward at (1.64), 
(1.72) and (1.55), respectively (Figure 4). However, the final optical density (OD) was 
much higher than without HA. UPMB10 and UPMRB9 with and without humic acid were 
checked under the microscope after 24 hours of incubation, as shown in (Figures 4 & 5).
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Figure 4. Bacterial growth curve (a) without Humic acid, and (b) with Humic acid for 24 hours with 
three replicates
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Humic acid formulation with the concentration of 0.1% amended with tryptic soy 
broth (TSB) shows that the bacterial growth from B. subtilis (UPMB10), B. tequilensis 
(UPMRB9), and the mixed strain was significantly higher than without humic acid for 24 
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hours (Figure 4). The bacteria’s response to HA in the medium varies, and these variances 
are visible even at the strain level (Tikhonov et al., 2010). The significant impact of humic 
acid is enhancing bacterial development, which helps to improve microbial growth by 
providing a carbon source. Moreover, due to its large size, humic acid serves as a food 
supply for microbes and a source of microflora. Vassilev et al. (2020) reported that Humic 
compounds had been shown to increase or decrease the populations or actions of various 
microbial species. In addition, B. subtilis encapsulated with HA ensured higher viability 
of the immobilized biostimulant (Nagpal et al., 2022).

Bacillus subtilis Endospores Detection After 12 Months of Shelf-Life

After 12 months of storage, B. subtilis species developed endospores that were detected 
following the Endospore staining method using malachite green. Bacillus subtilis 
(UPMB10) and mixed strains were used to detect spores. After 24 hours of incubation, 
results showed that UPMB10 strain, but after 12 months of incubation, there were vegetative 
cells with pink colour and endospores with dark green colour for both UPMB10 and mixed 
strain as shown in Figure 6.

Figure 6. Spores’ detection from Bacillus subtilis (UPMB10). (a) After 24 hours, (b) 12 months of storage, 
and (c) mixed strain after 12 months of storage
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Endospore stain allows the bacterium to be dormant and highly resistant cells to preserve 
the cell genetic material during extreme stress. Endospores can survive environmental 
assaults that normally kill bacteria (Wrangham, 2019). When examined under a microscope, 
the results of endospore staining in both B. subtilis (UPMB10) and the mixed strains of 
bacteria reveal a dark green colour, indicating the presence of endospores. An endospore 
is a structure that can withstand harsh environmental conditions such as dryness, heat, 
and acidity (Rattray et al., 2021; Silaban et al., 2020). Endospores are extremely thick and 
refractile due to their low water content (Tehri et al., 2018). Bacteria with endospores are 
extremely difficult to colour, necessitating specialized staining. Spore-producing bacteria 
are stain-resistant. Bacteria that produce spores will significantly bind to the dye component 
malachite green. Moreover, it cannot be stained using safranin (Silaban et al., 2020). Połaska 
et al. (2021) found that the genus Alicyclobacillus contains a group of Gram-positive 
producing highly resistant endospores during unfavourable environmental conditions.

According to these findings, humic acid could support the combination of two different 
PGPR strains by demonstrating greater overall biocontrol and plant growth promotion 
compared to the individual PGPR strains. Microbes in a senescent stage appear to continue 
some metabolic activity to preserve viability and protect against stress conditions (Haruta 
et al., 2015; Dehsheikh et al., 2020; Pota et al., 2020). The response of the bacteria to the 
presence of HA in the medium is various, and these differences are manifested even at 
the level of the strains. Thus, the capability for the growth of humic acids is widespread 
among bacteria. It was shown for the first time that the mixed bacteria were compatible 
with the addition of HA, which provides additional evidence for symbiotic growth between 
the bacteria strains for a long period (Tikhonov et al., 2010; Lipczynska-Kochany, 2018).

CONCLUSION

In conclusion, as an amendment with an optimum concentration of 0.1% HA, humic acid 
significantly increased bacterial growth population and the optical density at monthly 
intervals for up to 12 months of incubation compared to 0% HA. A higher concentration 
of humic acid has a better shelf-life. The bacterial strain population showed excellent 
vitality with minimal cell loss. That may relate because humic acids can provide shelter 
and carbon sources for bacteria. Survival and development of microorganisms in the 
liquid formulation are affected by various variables: nutrient content, moisture content, 
pH, available oxygen, and temperature. Thus, the optimum concentration of humic acid 
can be used to prolong the bacteria’s shelf-life and improve the quality of a biofertilizer. 
In this regard, the use of humic acid as an amendment for PGPR shelf-life in this study 
provided various advantages over the existing enrichment chemicals, demonstrating the 
grounds for the current investigation.
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